在全面介绍Storm之前,我们先通过一个简单的Demo让大家整体感受一下什么是Storm。
Storm运行模式:
- 本地模式(Local Mode): 即Topology(相当于一个任务,后续会详细讲解) 运行在本地机器的单一JVM上,这个模式主要用来开发、调试。
- 远程模式(Remote Mode):在这个模式,我们把我们的Topology提交到集群,在这个模式中,Storm的所有组件都是线程安全的,因为它们都会运行在不同的Jvm或物理机器上,这个模式就是正式的生产模式。
写一个HelloWord Storm
我们现在创建这么一个应用,统计文本文件中的单词个数,详细学习过Hadoop的朋友都应该写过。那么我们需要具体创建这样一个Topology,用一个spout负责读取文本文件,用第一个bolt来解析成单词,用第二个bolt来对解析出的单词计数,整体结构如图所示:
写一个可运行的Demo很简单,我们只需要三步:
- 创建一个Spout读取数据
- 创建bolt处理数据
- 创建一个Topology提交到集群
下面我们就写一下,以下代码拷贝到eclipse(依赖的jar包到官网下载即可)即可运行。
1.创建一个Spout作为数据源
Spout作为数据源,它实现了IRichSpout接口,功能是读取一个文本文件并把它的每一行内容发送给bolt。
- package storm.demo.spout;
- import java.io.BufferedReader;
- import java.io.FileNotFoundException;
- import java.io.FileReader;
- import java.util.Map;
- import backtype.storm.spout.SpoutOutputCollector;
- import backtype.storm.task.TopologyContext;
- import backtype.storm.topology.IRichSpout;
- import backtype.storm.topology.OutputFieldsDeclarer;
- import backtype.storm.tuple.Fields;
- import backtype.storm.tuple.Values;
- public class WordReader implements IRichSpout {
- private static final long serialVersionUID = 1L;
- private SpoutOutputCollector collector;
- private FileReader fileReader;
- private boolean completed = false;
- public boolean isDistributed() {
- return false;
- }
- /**
- * 这是第一个方法,里面接收了三个参数,第一个是创建Topology时的配置,
- * 第二个是所有的Topology数据,第三个是用来把Spout的数据发射给bolt
- * **/
- @Override
- public void open(Map conf, TopologyContext context,
- SpoutOutputCollector collector) {
- try {
- //获取创建Topology时指定的要读取的文件路径
- this.fileReader = new FileReader(conf.get("wordsFile").toString());
- } catch (FileNotFoundException e) {
- throw new RuntimeException("Error reading file ["
- + conf.get("wordFile") + "]");
- }
- //初始化发射器
- this.collector = collector;
- }
- /**
- * 这是Spout最主要的方法,在这里我们读取文本文件,并把它的每一行发射出去(给bolt)
- * 这个方法会不断被调用,为了降低它对CPU的消耗,当任务完成时让它sleep一下
- * **/
- @Override
- public void nextTuple() {
- if (completed) {
- try {
- Thread.sleep(1000);
- } catch (InterruptedException e) {
- // Do nothing
- }
- return;
- }
- String str;
- // Open the reader
- BufferedReader reader = new BufferedReader(fileReader);
- try {
- // Read all lines
- while ((str = reader.readLine()) != null) {
- /**
- * 发射每一行,Values是一个ArrayList的实现
- */
- this.collector.emit(new Values(str), str);
- }
- } catch (Exception e) {
- throw new RuntimeException("Error reading tuple", e);
- } finally {
- completed = true;
- }
- }
- @Override
- public void declareOutputFields(OutputFieldsDeclarer declarer) {
- declarer.declare(new Fields("line"));
- }
- @Override
- public void close() {
- // TODO Auto-generated method stub
- }
- @Override
- public void activate() {
- // TODO Auto-generated method stub
- }
- @Override
- public void deactivate() {
- // TODO Auto-generated method stub
- }
- @Override
- public void ack(Object msgId) {
- System.out.println("OK:" + msgId);
- }
- @Override
- public void fail(Object msgId) {
- System.out.println("FAIL:" + msgId);
- }
- @Override
- public Map<String, Object> getComponentConfiguration() {
- // TODO Auto-generated method stub
- return null;
- }
- }
2.创建两个bolt来处理Spout发射出的数据
Spout已经成功读取文件并把每一行作为一个tuple(在Storm数据以tuple的形式传递)发射过来,我们这里需要创建两个bolt分别来负责解析每一行和对单词计数。
Bolt中最重要的是execute方法,每当一个tuple传过来时它便会被调用。
第一个bolt:WordNormalizer
- package storm.demo.bolt;
- import java.util.ArrayList;
- import java.util.List;
- import java.util.Map;
- import backtype.storm.task.OutputCollector;
- import backtype.storm.task.TopologyContext;
- import backtype.storm.topology.IRichBolt;
- import backtype.storm.topology.OutputFieldsDeclarer;
- import backtype.storm.tuple.Fields;
- import backtype.storm.tuple.Tuple;
- import backtype.storm.tuple.Values;
- public class WordNormalizer implements IRichBolt {
- private OutputCollector collector;
- @Override
- public void prepare(Map stormConf, TopologyContext context,
- OutputCollector collector) {
- this.collector = collector;
- }
- /**这是bolt中最重要的方法,每当接收到一个tuple时,此方法便被调用
- * 这个方法的作用就是把文本文件中的每一行切分成一个个单词,并把这些单词发射出去(给下一个bolt处理)
- * **/
- @Override
- public void execute(Tuple input) {
- String sentence = input.getString(0);
- String[] words = sentence.split(" ");
- for (String word : words) {
- word = word.trim();
- if (!word.isEmpty()) {
- word = word.toLowerCase();
- // Emit the word
- List a = new ArrayList();
- a.add(input);
- collector.emit(a, new Values(word));
- }
- }
- //确认成功处理一个tuple
- collector.ack(input);
- }
- @Override
- public void declareOutputFields(OutputFieldsDeclarer declarer) {
- declarer.declare(new Fields("word"));
- }
- @Override
- public void cleanup() {
- // TODO Auto-generated method stub
- }
- @Override
- public Map<String, Object> getComponentConfiguration() {
- // TODO Auto-generated method stub
- return null;
- }
- }
第二个bolt:WordCounter
- package storm.demo.bolt;
- import java.util.HashMap;
- import java.util.Map;
- import backtype.storm.task.OutputCollector;
- import backtype.storm.task.TopologyContext;
- import backtype.storm.topology.IRichBolt;
- import backtype.storm.topology.OutputFieldsDeclarer;
- import backtype.storm.tuple.Tuple;
- public class WordCounter implements IRichBolt {
- Integer id;
- String name;
- Map<String, Integer> counters;
- private OutputCollector collector;
- @Override
- public void prepare(Map stormConf, TopologyContext context,
- OutputCollector collector) {
- this.counters = new HashMap<String, Integer>();
- this.collector = collector;
- this.name = context.getThisComponentId();
- this.id = context.getThisTaskId();
- }
- @Override
- public void execute(Tuple input) {
- String str = input.getString(0);
- if (!counters.containsKey(str)) {
- counters.put(str, 1);
- } else {
- Integer c = counters.get(str) + 1;
- counters.put(str, c);
- }
- // 确认成功处理一个tuple
- collector.ack(input);
- }
- /**
- * Topology执行完毕的清理工作,比如关闭连接、释放资源等操作都会写在这里
- * 因为这只是个Demo,我们用它来打印我们的计数器
- * */
- @Override
- public void cleanup() {
- System.out.println("-- Word Counter [" + name + "-" + id + "] --");
- for (Map.Entry<String, Integer> entry : counters.entrySet()) {
- System.out.println(entry.getKey() + ": " + entry.getValue());
- }
- counters.clear();
- }
- @Override
- public void declareOutputFields(OutputFieldsDeclarer declarer) {
- // TODO Auto-generated method stub
- }
- @Override
- public Map<String, Object> getComponentConfiguration() {
- // TODO Auto-generated method stub
- return null;
- }
- }
3.在main函数中创建一个Topology
在这里我们要创建一个Topology和一个LocalCluster对象,还有一个Config对象做一些配置。
- package storm.demo;
- import storm.demo.bolt.WordCounter;
- import storm.demo.bolt.WordNormalizer;
- import storm.demo.spout.WordReader;
- import backtype.storm.Config;
- import backtype.storm.LocalCluster;
- import backtype.storm.topology.TopologyBuilder;
- import backtype.storm.tuple.Fields;
- public class WordCountTopologyMain {
- public static void main(String[] args) throws InterruptedException {
- //定义一个Topology
- TopologyBuilder builder = new TopologyBuilder();
- builder.setSpout("word-reader",new WordReader());
- builder.setBolt("word-normalizer", new WordNormalizer())
- .shuffleGrouping("word-reader");
- builder.setBolt("word-counter", new WordCounter(),2)
- .fieldsGrouping("word-normalizer", new Fields("word"));
- //配置
- Config conf = new Config();
- conf.put("wordsFile", "d:/text.txt");
- conf.setDebug(false);
- //提交Topology
- conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);
- //创建一个本地模式cluster
- LocalCluster cluster = new LocalCluster();
- cluster.submitTopology("Getting-Started-Toplogie", conf,
- builder.createTopology());
- Thread.sleep(1000);
- cluster.shutdown();
- }
http://fireinwind.iteye.com/blog/2153699
- }
运行这个函数我们即可看到后台打印出来的单词个数。
(ps:因为是Local模式,运行开始可能会打印很多错误log,这个先不用管)
相关推荐
《深入理解Storm-Wordcount实例》 Storm是一个分布式实时计算系统,它被广泛应用于大数据处理领域,尤其是在实时数据流分析方面。"storm-wordcount"是Storm中的一个经典示例,用于演示如何处理实时数据流并进行简单...
在这个“Storm的WordCount实例”中,我们将深入探讨如何利用Storm来实现经典的WordCount程序,这是一个在大数据处理中常见的示例,用于统计文本中的单词出现频率。 首先,理解Storm的基本架构是至关重要的。Storm由...
**Storm本地模式WordCount亲测可用** 在大数据处理领域,Apache Storm是一个实时计算框架,它被广泛用于处理无界数据流。"Storm本地模式"是Storm提供的一种在单机环境中进行开发和测试的机制,无需分布式环境即可...
本压缩包提供的"storm之WordCount示例Java代码"是针对Storm的一个经典入门教程,展示了如何使用Java语言实现一个简单的WordCount程序。这个程序的主要目标是统计文本数据流中的单词出现次数。 首先,我们需要理解...
【标题】"storm_wordcount.zip" 是一个基于Java开发的Apache Storm项目,主要实现的功能是对英语单词进行实时统计。Storm是一个分布式实时计算系统,能够处理海量数据流,并保证每个事件只被处理一次(Exactly-once...
本项目主要实现的功能是:统计单词的个数 jdk1.8 jstorm2.2.1 执行步骤: 1. 本地正确安装maven 2. 本地正确安装zookeeper,并启动 3. Idea导入项目源码,以...4. 可分别运行random或wordcount下topology下的main类
WordCount是Hadoop入门学习中的一个经典示例,用于统计文本中各个单词出现的次数。这个程序简单直观,很好地展示了MapReduce的工作原理。接下来,我们将深入探讨Hadoop的WordCount实例及其背后的原理。 首先,我们...
wordcount 项目说明 WordCount, 一个Storm入门实例。 实现了如下的流程: 抓取ChinaDaily的网页内容作为数据源;对数据进行分词处理,按词频排序并打印排序结果。 相关信息 作者:robin 博客地址:
【标题】:Storm的集群搭建实战课程代码和PPT 【描述】:这份资源包含了关于Storm集群搭建的实战课程代码和配套的PPT讲解材料,是学习和掌握Apache Storm分布式流处理系统的重要参考资料。 【标签】:代码 【知识...
MapReduce 是 Apache Hadoop 的核心组件之一,它为大数据处理提供了一个分布式计算框架。WordCount 是 MapReduce 框架中经典的入门示例,它统计文本文件中每个单词出现的次数。在这个案例中,我们将深入探讨如何在 ...
WordCount是MapReduce中的一个经典示例,它用于统计文本中各个单词出现的次数,简单明了地展示了MapReduce的核心理念和工作流程。 在Hadoop环境中,MapReduce通过两个主要阶段来完成任务:Map阶段和Reduce阶段。...
数据架构师第006节实战.基于hadoop streaming的wordcount .mp4
在Hadoop生态系统中,`WordCount`程序是一个经典的示例,用于演示分布式计算的基本原理。在标题中的"WordCount2_hadoopwordcount_"可能指的是Hadoop WordCount的第二个版本,通常是在Hadoop 2.x环境下运行。这个程序...
【标题】"最简单MR WordCount" 涉及到的是MapReduce编程模型中的一个经典示例,WordCount。在Hadoop生态系统中,WordCount是一个基础但非常重要的应用,用于统计文本文件中每个单词出现的次数。这个程序展示了...
总结起来,"hadoop学习之wordCount以及文件上传demo"涵盖了Hadoop的基本操作,包括数据处理的核心——MapReduce模型,以及文件系统的使用。通过WordCount实例,我们可以了解Hadoop的分布式计算原理;通过文件上传,...
MapReduce之Wordcount代码实现 接着,我们进入MapReduce WordCount程序的代码实现部分。WordCount程序由两个主要部分组成,即Mapper类和Reducer类。 Mapper类代码解析: ```java publicstaticclassMapextendsMapper...
【标题】"test_Storm_wordCount" 是一个基于Java实现的Apache Storm项目,它主要用于演示分布式实时计算系统如何处理文本数据并进行词频统计。在大数据处理领域,Apache Storm是一个实时计算框架,能够处理无界数据...
《Hadoop入门脚本WordCount详解》 在大数据处理领域,Hadoop是一个不可或缺的重要工具,它的分布式计算模型为海量数据的处理提供了强大的支持。而WordCount则是Hadoop入门的经典示例,通过它,我们可以深入理解...
### Spark 下实现 WordCount #### 一、简介 在大数据处理领域,Apache Spark 是一个非常流行的框架,它能够高效地处理大规模数据集。WordCount 是一个经典的示例程序,用于统计文本文件中每个单词出现的次数。本篇...
WordCount 是 Hadoop 中最经典的示例程序之一,它用于统计文本文件中每个单词出现的次数。通过 WordCount 的学习和实践,可以帮助我们更好地理解 Hadoop 的基本工作原理以及 MapReduce 框架的使用。 #### 二、配置...